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FORECASTING THE BRAZILIAN LIGHT FUEL CONSUMPTION USING 

TIME SERIES AND MACHINE LEARNING TECHNIQUES 

Abstract
Purpose: Fuel demand forecast is a fundamental tool to guide private planning actions and 
public policies aim to guarantee energy supply. In this paper, different forecasting methods 
were evaluated to project the consumption of light fuels in Brazil (fuels used by vehicles with 
an internal combustion engine). 
Design: Eight different methods were implemented, besides of ensemble learning technics that 
combine the different models. The evaluation was carried out based on the forecast error for a 
forecast horizon of 3, 6 and 12 months. 
Findings: The statistical tests performed indicated the superiority of the evaluated models 
compared to a naive forecasting method. Furthermore, for 12 months forecast, it was found 
methods that outperform, with statistical significance, the SARIMA method, that is widely 
used. The results indicate, for all forecast horizon, that is possible to estimate a model whose 
mean absolute percentage error is less than 3%.
Practical implications: The level of accuracy reached allows the use of these models as tools 
to assist public and private agents that operate in this market. 
Originality: The study seeks to fill a gap in the literature on the Brazilian light fuel market. In 
addition, the methodological strategy adopted assesses projection models from different areas 
of knowledge using a robust evaluation procedure.

Keywords: Fuel Demand; Forecasting Methods; Time Series; Machine Learning; Forecast 
Evaluation

1 INTRODUCTION

Energy regulation and policy aim, among other elements, to ensure predictability of 

domestic supply. From an economic point of view, this element is critical for better allocation 

of resources. In the social sphere, greater predictability is highlighted when the society’s well-

being is impacted by the effects of a supply crisis.

In fact, the management of energy demand has become a mandatory issue for public and 

private agents working in this area, aiming to plan the need for future resources, promote 

environmental conservation measures, optimize the use of energy sources, assist on decision 

making, and ensure regularity of supply (Suganthi and Samuel, 2012).

In this context, the use of quantitative models has become recurrent to improve the 

forecasts associated with this market and is being consolidated as a fundamental tool to meet 

the aforementioned objectives.
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Among the various sources of energy, liquid fuels used in spark-ignited vehicles (light 

fuels or Otto cycle [1] fuels) are highlighted, which are mostly used to meet the needs of private 

transportation around the globe.

In Brazil, as it will be detailed in the following topics, the liquid fuels sector has 

undergone technological, economic, and regulatory changes that have significantly altered its 

functioning. Since 2003, the country has witnessed the growth of the flex-fuel vehicle fleet and 

the possibility of choosing the fuel to be used in these vehicles at each filling. In the regulatory 

sphere, the beginning of the 2000s was marked by the release of fuel prices and the beginning 

of free market competition.

Additionally, over the past two decades, the fuel sector has had different pricing 

strategies for oil products internally, with impacts on the average price of light fuels, and also, 

significant changes in the economic condition of the country, with recurrent reflections on the 

dynamics of the Otto cycle fuel consumption. 

These changes have made the Brazilian light fuel market a unique case in the world and 

have substantially increased its complexity. Several factors that are difficult to predict started 

to influence the formation of fuel prices, the dynamics of domestic production, the behavior of 

consumption and, consequently, the guarantee of internal supply. 

Therefore, the present study seeks to evaluate different methods for making predictions 

about the consumption of light fuels in Brazil. The analysis recognizes the need to anticipate 

the behavior of demand, considered as one of the main elements associated with greater 

predictability to the fuel market. 

The study seeks to answer questions such as: what is the best method to forecast the 

consumption of light fuels in the country? Is the performance of the models satisfactory for use 

as a decision-making support tool for public and private agents? 

To answer these questions, the performance of the most common models in the literature 

on the subject will be evaluated: Sarima (SAR) and Arima with binary variables for seasonality 

(AR.Bin), Vector Error Correction Model (VECM), univariate and multivariate Artificial 

Neural Networks (ANN and MANN), Support Vector Machine (SVM), Hybrid Neural Fuzzy 

Inference System (HyFIS), Random Forest (RF) and, finally, combined models (Ensemble 

Learning).

As in other nations, the proposed assessment is justified by offering grounds to expand 

the guarantee of domestic supply. Specifically for the Brazilian market, the results also provide 
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useful information for achieving various public policy standards and measures associated with 

the future behavior of demand for fuels.

Finally, the proposed study seeks to fill a gap in the literature on the Brazilian market. 

This is because great part of the papers available on the theme did not address consumption 

forecast. In fact, these studies aimed to understand the effect of prices, income, and other 

economic variables on the behavior of demand for hydrous ethanol, gasoline, or natural gas 

(NGV). 

2 THE BRAZILIAN LIGHT FUEL MARKET

The Brazilian light fuel market has peculiarities derived from technological, productive, 

and institutional complexity that affect, on the one hand, consumption decisions and, on the 

other, the dynamics of production and supply. 

Regarding technology, the introduction of flex-fuel vehicles in early 2003 gave the 

Brazilian consumer the opportunity to decide between ethanol and gasoline or any mixture of 

both products at each filling. This change affected the dynamics of price formation and, 

consequently, of the country’s consumption of fuels by making the demand for individual fuels 

more elastic (Freitas and Kaneko, 2011).

In 2020, the light fleet with flex-fuel engines represented 80,1% of automobiles and 

41,1% of motorcycles in circulation in the country (UNICA, 2020). Unlike other countries 

where gasoline is the main fuel and, in the Brazilian market the configuration established by 

the flex-fuel fleet requires that the demand for light fuels incorporate the aggregate consumption 

of gasoline, hydrous ethanol and, also, natural gas ou NGV (Rodrigues and Bacchi, 2017).

In the productive sphere, since sugarcane is the raw material for Brazilian ethanol, fuel 

production is subject to climatic conditions and to the fundamentals observed in the sugar 

market. International cycles and fluctuations in the sweetener’s value affect domestic 

production decisions, since most sugar plants may, albeit in a restricted way, choose to use this 

material shared for one or another product (Drabik et al., 2014). 

In the internal supply of gasoline, Petrobrás [2] has a near-monopoly of the activity, 

being responsible for more than 90% of the domestic production of the product. This condition 

allows the oil company to define the domestic prices regardless of market conditions.

In the institutional sphere, from 2008 to 2016 there was constant government 

intervention in the oil sector aiming at inflation control. The main policies were the freezing of 
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domestic gasoline prices and the exemption from federal taxes levied on the oil products 

(Rodrigues and Bacchi, 2016).

After being immersed in an economic crisis, as of 2015 the federal government began 

to tax fuels again to contain the public deficit. At the same time, Petrobras’s pricing policy was 

changed, and the price of gasoline began to be adjusted periodically after the company 

underwent major financial losses (Rodrigues and Rodrigues, 2018).

In this context, the dimensioning of domestic consumption of fuels becomes essential 

for the management of resources both by the public sector (need for inspection, infrastructure 

for the flow of production, etc.), and by the private sector, to define the increase in production 

capacity, decision of the plants’ production strategy, dimensioning of investments in logistics 

by distributors, among others.

In fact, this complexity of the national market has stimulated countless studies on the 

subject. Specifically in the case of demand, most studies conducted aimed at assessing gasoline, 

hydrous ethanol, or NGV consumption behavior individually in the face of changes in economic 

variables. This is the case of those elaborated by Cardoso et al. (2019), Santos et al. (2018), 

Isabella et al. (2017), Gomez and Legey (2015), Barros, Gil-Alana and Wanke (2014), Du and 

Carriquiry (2013), Salvo and Huse (2013), Santos (2013), Freitas and Kaneko (2013), Pacini 

and Silveira (2011) and Alves and Bueno (2003), Burnquist and Bacchi (2002), among others.

Among the authors who assessed the total demand for light fuels in Brazil (gasoline, 

hydrous ethanol, and NGV together) are those developed by Rodrigues and Bacchi (2017), 

Costa et al. (2017), Figueira et al. (2014) and Rodrigues and Bacchi (2016). Although the 

proposed models adopt the same dependent variable of this study, these papers focused on the 

estimation of demand equations, identifying the price and income elasticities for fuel 

consumption in the Otto cycle.

Finally, it is worth mentioning the studies that used quantitative methods to forecast fuel 

consumption in Brazil. Castro and Santiago (2012) and Mattos and Perobelli (2011) used auto-

regressive vectors with error correction (VECM) to forecast the Brazilian consumption of each 

of the fuels individually. Santiago, Mattos and Perobelli (2011) also incorporated input-product 

techniques and macroeconomic variables into the analysis.

Zanini et al. (2001), in their turn, used a hybrid model of neural networks and dynamic 

regression to forecast gasoline consumption in Brazil. Figueira et al. (2010) used classic time 

series models to forecast ethanol consumption.
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In general, the studies carried out for the Brazilian market are limited to the following 

aspects: i) they are essentially concentrated on the use of traditional time series methods; ii) 

they did not evaluate models to forecast the consumption of light fuels - most studies aim to 

verify the fit of the model in the training data and the significance of the elasticities; iii) they 

did not dynamically test several methods in the same database and with the same error metric.

In fact, despite the small number of studies focused on the fuel consumption forecast in 

the national market, there are numerous studies proposing the forecast of the demand for energy 

in the international literature, especially for electricity. 

That said, when reviewing these works, the following techniques were most frequently 

identified: Fuzzy Logic models (Chang et al., 2011; Kucukali and Baris, 2010; Padmakumari 

et al., 1999; Pai, 2006), Support Vector Machine (Ahmad et al., 2014; Che and Wang, 2014; 

Chen et al., 2017; Debnath and Mourshed, 2018; Fan et al., 2008; García Nieto et al., 2018; 

Hong, 2009) and Random Forest (Dudek, 2015; Ibarra-Berastegi et al., 2015; Lahouar and Ben 

Hadj Slama, 2015; Kane et al., 2014). Although little explored to forecast fuel consumption, 

the Artificial Neural Network models (Ebrahimpour et al., 2011; Kavaklioglu et al., 2009; 

Kandananond, 2011; Khashei and Bijari, 2010; Ringwood et al., 2001; Sözen et al., 2005) have 

been recurrently adopted to forecast the demand for different energy sources and other 

applications. 

Other methods applied to forecasting the demand and production of different energy 

sources can be consulted in Deb et al., (2017), Debnath and Mourshed (2018) and Suganthi and 

Samuel (2012).

3 METHODOLOGY

3.1 Data source and pre-treatment 
The database used to represent the total demand for light fuels is composed by the sum 

of the consumption of gasoline, hydrous ethanol, and NGV, converted into liters of equivalent 

gasoline. 

According to the model proposed by Rodrigues and Bacchi (2017), this conversion is 

necessary to consider the distinct efficiency of each fuel in the demand composition. Therefore, 

the consumption of light fuels ( ) will be given by Eq. (1).𝐶𝑡
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𝐶𝑡 =
3

∑
𝑖 = 1

𝐶𝑖𝑡 × 𝑅𝑒𝑖 (1)

where  representing the amount consumed of each fuel 𝐶𝑖𝑡 𝑖 =

 in month ; , is the coefficient of energy equivalence for {hydrous ethanol, gasoline, NGV} 𝑡 𝑅𝑒𝑖

the conversion into equivalent liters of gasoline (0.70 in case of hydrous ethanol, 1.23 for NGV, 

and 1.00 for gasoline). 

The monthly data on gasoline and hydrous ethanol consumption were obtained from 

information by the Brazilian Agency of Petroleum, Natural Gas, and Biofuels (ANP, 2018). 

Additionally, the amount of natural gas commercialized in the country was compiled by the 

Brazilian Association of Piped Gas Distributing Companies (ABEGÁS, 2018).

The consumption series, which stars in January 2002 and finishes in August 2018 [3], 

can be viewed in Figure 1.

Insert Figure 1

For multivariate forecast models, two other series were forecast together with the Otto 

cycle consumption. The first consists of the GDP per capita estimated from the monthly GDP 

released by the Central Bank of Brazil (BACEN, 2018) and the resident population by the 

Brazilian Institute of Geography and Statistics (IBGE, 2018). The second, in its turn, refers to 

the average price of light fuels to the final consumer (ANP, 2018).

3.2 Forecast models evaluated

3.2.1 Seasonal Autoregressive Integrated Moving Average Model (Sarima)
Sarima model ( , , )( , , ) (SAR) aims at explaining a stationary time series through 𝑝 𝑑 𝑞 𝑃 𝐷 𝑄

the past values of the series itself and the model errors (Box et al., 2008).

The estimated model can be represented according to Eq. (2).

Δ𝐷(Δd𝑁𝑡) = 𝜙0 + ∑𝑝

𝑖 = 1
𝜙𝑖Δ𝐷(Δd𝑁𝑡 ― 𝑖) + ∑𝑞

𝑖 = 1
𝜃𝑖𝑒𝑡 ― 𝑖 + ∑𝑃

𝑗 = 1
Φ𝑗Δ𝐷(Δd𝑁𝑡 ― 𝑓 × 𝑗)

+ ∑𝑄

𝑗 = 1
Θ𝑗𝑒𝑡 ― 𝑓 × 𝑗 + 𝑒𝑡 , 𝑡 = 1,…,𝑛

(2
)

where  and  are the difference operator of order  and  respectively,  is the intercept Δd Δ𝐷 𝑑 𝐷 𝜙0

of the stationary series and , ,  and  are coefficients that multiply the autoregressive 𝜙𝑖 𝜃𝑖 Φ𝑗 Θ𝑗
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terms and the moving averages,  is the series frequency that characterizes its seasonality (for 𝑓

a monthly series ), and  is a normally distributed error with zero mean and variance 𝑓 = 12 𝑒𝑡

.𝜎2
𝑒

Along with the traditional approach, which uses the series and errors lags to incorporate 

seasonality effects, this study proposes an alternative approach using binary regressors to 

control seasonality (AR.Bin). Thus, the model starts being represented by Eq. (3).

Δ𝐷(Δd𝑁𝑡) = 𝜙0 + ∑𝑝

𝑖 = 1
𝜙𝑖Δ𝐷(Δd𝑁𝑡 ― 𝑖) + ∑𝑞

𝑖 = 1
𝜃𝑖𝑒𝑡 ― 𝑖 + ∑𝑓 ― 1

𝑚 = 1
𝛽𝑚b𝑚 + 𝑒𝑡 , 𝑡 = 1,…,𝑛(3

)

Where  is a binary variable representing one month  and  is the coefficient representing b𝑚 𝑚 𝛽𝑚

the differential effect of this month related to the basal month. The seasonality effect on the 

basal month is given by , while for any  this effect will be .𝜙0 𝑚 = 1,…,𝑓 ― 1 𝜙0 + 𝛽𝑚

To determine the number of autoregressive components and moving averages, the 

autocorrelation and partial autocorrelation functions were evaluated. The order of integration 

of the series was determined from the KPSS (Kwiatkowski et al., 1992) and DF-GLS (Elliott 

et al., 1996) tests for a unit root. The DP test (Dickey and Pantula, 1987) was implemented to 

check for the presence of two roots and the presence of seasonal unit root was evaluated 

according to the procedure described by Osbom et al. (1988). The final selection was based on 

the AIC information criterion. 

3.2.2 Autoregressive Vector with Error Correction Mechanism (VECM)
The Autoregressive Vector with Error Correction Mechanism (VECM) consists of an 

alternative approach to forecast non-stationary time series. The structure starts from an 

autoregressive vector (VAR) with endogenous variables  with multivariate autoregressive 𝑚

order behavior, as described by Eq. (4).

𝐘𝑡 = 𝚽0 + ∑𝑝

𝑖 = 1
𝚽𝑖𝐘𝑡 ― 𝑖 + 𝐆𝐙𝑡 + 𝐞𝑡 , 𝑡 = 1,…,𝑛 (4)

Where  and  are vectors of m endogenous variables and white noise,  is a vector of  𝐘𝑡 𝐞𝑡 𝐙𝑡 𝑔

exogenous variables, the vectors of coefficients  and  of length  and  is the 𝚽0 𝚽𝑖 , 𝑖 = 1,…,𝑝 𝑚 𝐆

matrix of exogenous variable coefficients with dimension .𝑚 × 𝑔

When the variables are non-stationary, but have a common long-term trajectory, it is 

still possible to use a VAR by introducing an error correction model.
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Once the presence of long-term equilibrium is identified, the variables contained in  𝐘𝑡

are said to be cointegrated in order  or . Thus, it is possible to estimate up to  (𝑑,𝑏) 𝐶(𝑑,𝑏) 𝑚 ― 1

cointegration vectors. In this case, Eq. (4) can be changed and  can be expressed by a VECM 𝐘𝑡

model according to Eq. (5).

Δ𝐘𝑡 = 𝛂𝐁T𝐘𝑡 ― 1 + ∑𝑝 ― 1

𝑗 = 1
Π𝑗Δ𝐘𝑡 ― 𝑗 + 𝐆𝐙𝑡 + 𝐞𝑡 (5)

Where  and  are matrices  such that  is the 𝐁 = [𝛃1,𝛃2,…,𝛃𝑟] 𝛂 𝑚 × 𝑟 𝑟 = 𝑝𝑜𝑠𝑡𝑜(𝛂𝛃T) , 𝑟 < 𝑚

number of non-zero cointegration vectors and, consequently, error correction vectors. The latter 

are expressed by  and 𝐁T𝐘𝑡 ― 1 = 𝐮𝑡 ― 1 = [𝑢1
𝑡 ― 1,𝑢2

𝑡 ― 1,…,𝑢𝑟
𝑡 ― 1] Π𝑗 = ― ∑𝑝 ― 1

𝑖 = 1 + 𝑗𝚽𝑖

 are vectors of coefficients that multiply . , 𝑗 = 1,…,𝑝 ― 1 Δ𝐘𝑡 ― 𝑗

The cointegration test was conducted as proposed by Johansen (1988, 1991). The 

selection of the number of autoregressive terms was based on the AIC information criterion. In 

the verification process, the Portmanteau (Lütkepohl, 2007) and Edgerton and Shukur (1999) 

autocorrelation tests, the Jarque-Bera (Lütkepohl, 2007) and Shapiro-Wilk (Shapiro and Wilk, 

1965) multivariate normality test and the residual multivariate heteroscedasticity test ARCH-

LM (Engle, 1982) have been implemented.

3.2.3 Artificial Neural Networks (ANN)
Artificial Neural Networks (ANN) can be represented by a network of oriented links 

that are interconnected at certain points called nodes or neurons (Haykin, 2001).

Algebraically, in an ANN where all neurons of a layer are interconnected with all 

neurons of the next layer (referred as totally connected ANN), the output of a neuron  of layer 𝑘

, represented by , is given by the application of an activation function  on the linear 𝑙 𝑓𝑙
𝑘 𝑔(.)

combination of the outputs of neurons belonging to layer , i.e, , 𝑙 ― 1 𝑓𝑙
𝑘 = 𝑔(∑

𝑘′ ∈ 𝑙 ― 1𝜔𝑙
𝑘′𝑓𝑙 ― 1

𝑘′ )
where  is the vector of weights that weigh the synaptic links of neurons  belonging to layer 𝜔𝑙

𝑘′ 𝑘′

 to neuron  of layer . 𝑙 ― 1 𝑘 𝑙

Let the parameters vector of the model given by , , a 𝛚 = {{𝜔𝑙
𝑘′}𝑘′ ∈ 𝑙 ― 1}𝐿

𝑙 = 2
{𝐘𝑡,𝐱𝑡}𝑛

𝑡 = 1

set of known data where  is vector -varied of the optimal response to a vector –varied of 𝐘𝑡 𝑚 𝑝

input . The estimated value of  is given by Eq. (6).𝐱𝑡 𝛚

𝛚 = argmin
𝛚 { 1

𝑚∑𝑚

𝑗 = 1
∑𝑛

𝑡 = 1
(𝑌𝑡,𝑗 ― 𝑓𝐿

𝑗 (𝛚,𝐱𝑡))2} (6)

Page 8 of 58International Journal of Energy Sector Management

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



International Journal of Energy Sector M
anagem

ent

9

Where  are nonlinear mappings of  resulting in layer , called 𝑓𝐿(𝛚,𝐱𝑡) = {𝑓𝐿
𝑗 (𝛚,𝐱𝑡)}𝑚

𝑗 = 1 𝐱𝑡→𝐘𝑡 𝐿

the ANN output layer. In the present study  and the number of neurons in the output layer 𝐿 = 3

is equal to the number of endogenous variables  in the model.(𝑚)

To optimize the function, the BFGS algorithm was used because it presents better 

performance in smaller dimension problems (Haykin, 2001).

Two ANN structures were estimated. The first is a univariate model  with Otto (𝑚 = 1)

cycle fuel consumption as the output variable and  autoregressive terms as input variables. 𝑝

The second is a multivariate model  that jointly forecasts the Otto cycle consumption, (𝑚 = 3)

the average fuel price and GDP per capita through  autoregressive terms for each of these 𝑝

variables as an input vector. 

3.2.4 Support Vector Machines (SVM)
Support Vector Machine (SVM) is a non-parametric model capable of estimating 

nonlinear relations from an input vector to an output variable, using the so-called kernel trick 

(Hastie et al., 2009). 

It consists of applying a nonlinear transformation  on the input {{𝜑𝑗(𝐱𝑡)}𝑚1
𝑗 = 1}𝑛

𝑡 = 1

variables so as the dimension increases from  to . The objective of the {{x𝑖,𝑡}𝑚0
𝑖 = 1}𝑛

𝑡 = 1 𝑚0 𝑚1

method is to transform a nonlinear relation of  in a linear relation of .𝐱𝑡→𝑌𝑡 𝝋(𝐱𝑡)→𝑌𝑡

It is necessary to estimate the vector of weights  that allows the construction of a 𝛚

hyperplane , so as . The estimate of  𝐿(𝑌𝑡,𝑓(𝛚,𝐱𝑡)) = 0 𝑓(𝛚,𝐱𝑡) = 𝛚𝑇𝝋(𝐱𝑡) = ∑𝑚1

𝑗 = 0𝑤𝑗𝜑𝑗(𝐱𝑡)

coefficients vector takes place indirectly, from the resolution of the problem of optimization 

given by Eq. (7).

max
𝜶,𝜶′

𝑄(𝜶,𝜶′) =
𝑛

∑
𝑡 = 1

𝑌𝑡(𝛼𝑡 ― 𝛼′𝑡) ― 𝜖
𝑛

∑
𝑡 = 1

(𝛼𝑡 ― 𝛼′𝑡) ―
1
2

𝑛

∑
𝑡 = 1

𝑛

∑
𝑗 = 1

(𝛼𝑡 ― 𝛼′𝑡)(𝛼𝑗 ― 𝛼′𝑗)𝐾(𝐱𝑡,𝐱𝑗)

𝑠.𝑡

∑𝑛

𝑡 = 1
(𝛼𝑡 ― 𝛼′𝑡) = 0

0 ≤ 𝛼𝑡 ≤ 𝐶 , 𝑖 = 1,2,…,𝑛
0 ≤ 𝛼′𝑡 ≤ 𝐶 , 𝑖 = 1,2,…,𝑛

(7
)
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In Eq. (7)  is called kernel function. In 𝐾(𝐱𝑡,𝐱𝑗) = 𝝋𝑻(𝐱𝒕)𝝋(𝐱𝒋) = ∑𝑚1

𝑗 = 0𝜑𝑗(𝐱𝑡)𝜑𝑗(𝐱𝑗)

practice, to estimate an SVM it is not necessary to know the function , only the kernel 𝝋(𝐱)

function and that it is in accordance with Mercer’s theorem (Haykin, 2001). All input vectors 

 whose  are called support vectors. In fact, these observations are the ones that 𝐱𝑡 (𝛼𝑡,𝛼′𝑡) ≠ 0

define the estimated hyperplane since the optimal weight vector will be given by 𝛚 =

 and the forecast value for an input  will be ∑𝑛
𝑡 = 1(𝛼𝑡 ― 𝛼′𝑡)𝝋(𝐱𝑡) 𝐱ℎ 𝑌ℎ = ∑𝑛

𝑡 = 1(𝛼𝑡 ― 𝛼′𝑡)𝐾(𝐱ℎ,𝐱𝑡)

. 

3.2.5 Hybrid Neural Fuzzy Inference system (HyFIS)
The fuzzy controls are ways to establish relations among linguistic variables from 

modeling of rules connecting a condition (If) and a consequence (Then). The systems mixing 

the fuzzy systems and the neural networks paradigms can be called “neural fuzzy” (Jang et al., 

1997).

This study implemented the method Hybrid Neural Fuzzy Inference System - HyFIS 

(Kim and Kasabov, 1999). The step of rules learning was performed using the procedure 

proposed by Wang and Mendel (1992). 

3.2.6 Random Forest
Random Forest model uses decision trees to make forecasts of  in function of an input 𝑦𝑡

vector . In this case, several regression trees are estimated, and the final forecast of the 𝐱𝑡

algorithm is given by the average of trees forecasts (Breiman, 2001; Hastie et al., 2009). 

Assuming that a regression tree set  will be estimated to map the relation , {𝑇𝑏}𝐵
𝑏 = 1 𝐱→𝑌

then the algorithm performs the following steps:

1. Obtaining a subsample randomically of size  from the training sample.𝑛𝑏

2. Generating a regression tree  with the simulated sample and, using the stop 𝑇𝑏

criterion that each terminal node reaches the minimum size , or the variation of 𝑛𝑏
𝑚𝑖𝑛

the training sample residual sum of squares is below a tolerance limit:

3. The remaining observations on the terminal nodes are used in the forecast of an 

individually tree given by . Where  represents the variables selected, the 𝑇(𝐱,Θb) Θb

optimal division points and the observations in each terminal node.

4. The forecast value for an input vector  is given by .𝐱 𝑓 =
1
𝐵∑𝐵

𝑏 = 1𝑇(𝐱,Θb)
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Knowing that there is a set of  possible divisions for the nodes of a tree , the selection 𝑆 𝑇𝑏

of the optimal node break point was made according to the algorithm CART for decision trees 

(Breiman et al., 1984). 

3.2.7 Ensemble Learning Models
The ensemble learning models aim at combining the results of different algorithms to 

reduce forecast error variance and to increase its accuracy. The most usual form is based on the 

linear combination of forecasts according to Eq. (8) and (9).

𝐲 = 𝐘𝐖 (8)

∑𝐽

𝑗
𝑤𝑗 = 1 (9)

where  is a combined forecast vector with dimension ,  is a matrix  containing the 𝐲 𝑇 × 1 𝐘 𝑇 × 𝐽

forecasts of the  different algorithms for  periods and  is the dimension vector  which 𝐽 𝑇 𝐖 𝐽 × 1

contains the weights  for the linear combination of forecasts. 𝑤𝑗

The study results proposing a combination of forecasts have been unanimous, favoring 

the improvement of forecast accuracy (Hyndman and Athanasopoulos, 2018). Two forms of 

combination of predictions were evaluated from an empirical point of view. The first estimates 

the weights by means of restricted least squares (RLS) imposing that the sum of the weights is 

equal to one. In the second method, a simple average (AVG) of the predictions of the different 

models is taken as the final projection of the data. 

3.3 Determination of hyperparameters and evaluation metrics

3.3.1 Determination of hyperparameters of the models
Table I shows the hyperparameters of each estimated model.

Insert Table I

The determination of the set of hyperparameters was obtained by minimizing the 

estimate of the generalization error or forecast error (Hastie et al., 2009). 

For linear models, a simple way to assess the generalization capacity is to compare the 

information criteria of Akaike or AIC (Hastie et al., 2009; Hyndman and Athanasopoulos, 
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2018) after estimating the models with all available data. These are the cases of the Sarima and 

VECM methods. 

For non-linear models, the cross-validation process was used. Cross-validation 

involving time series is different from problems involving panel data due to the series 

autoregressive dynamics (Bergmeir et al., 2018). In the present study the procedure was 

structured as follows:

1. A set of parameters  is initially selected for the model.Θ𝑖

2. An initial cut is performed in the series of consumption of the Otto cycle, with only 

the data from January 2002 to December 2011 remaining, that is, 120 observations 

of a total of 200. The selection of this cut point is explained by the change of trend 

in the series that was observed from 2013 on.

3. This subseries is used to estimate the models and obtained the step ahead forecasts ℎ 

( ), and the forecast error vector is calculated and stored.𝑌

4. A new observation is added to the training base and step 3 is repeated.

5. Steps 3 and 4 are repeated until the -step ahead forecast has as its last forecast period ℎ

the last observation known of the series. The root mean square error (RMSE) is 

calculated for the model with parameters  according to Eq. (10).Θ𝑖

𝑅𝑀𝑆𝐸𝑖 =
1

(81 ― ℎ)ℎ∑
(81 ― ℎ)ℎ

𝑗 = 1
(𝑌𝑗 ― 𝑌𝑗)2 (10)

Obtaining the forecast errors of the subseries, it was possible to estimate RMSE as 

metrics of the model generalization error, and to select the set of hyperparameter with better 

performance. 

3.3.2 Evaluation metrics and statistical tests for comparing algorithms
After defining the hyperparameters, one can proceed to compare the different 

forecasting methods. An interactive process was conducted to generate a robust estimate of the 

accuracy of the models. The following steps were performed:

1. An initial cut is made in the Otto cycle consumption series leaving only the data from 

January 2002 to December 2011.

2. This subseries is used to estimate the models and carry out the ℎ-step ahead forecast. 

The RMSE is calculated, according to Eq. (13), and stored as a measure of accuracy in 
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the period. In this case, each cutoff period has an RMSE value for the ℎ-step ahead 

forecast.

3. A new observation is added to the training base and step 3 is repeated.

Step 3 is repeated until the ℎ-step ahead forecast has the last known observation of the 

data as the last predicted period. Thus, a series with the RMSE is obtained for each point in 

time and for each model. Figure 2 illustrates the stages of the interactive process based on a 3-

month horizon.

Insert Figure 2

In this study, two nonparametric tests were implemented (Shingala, 2016). Friedman’s 

test was performed to check for a difference between the average ranking of an algorithm , 𝑖

given by , and the average performance of all models . The test hypotheses were shown on 𝑟𝑖 𝑟

Eq. (11).

Friedman
, there is no difference in the ranking of methods in general.H0:𝑟𝑖 =  𝑟

, there is difference in the ranking of methods in general.HA:𝑟𝑖 ≠  𝑟
(11)

If Friedman’s test rejects , Nemenyi test can be performed to compare the pairs of H0

methods. In this case, these are compared pair-to-pair through its average ranking. Eq. (12) 

shows the null hypotheses and test alternatives.

Nemenyi
, there is no difference in the ranking of methods  and .H0:𝑟𝑖 =  𝑟𝑗 ∀ 𝑖 ≠ 𝑗 𝑖 𝑗

, there is no difference in the ranking of methods  and HA:𝑟𝑖 ≠  𝑟𝑗 ∀ 𝑖 ≠ 𝑗 𝑖
.𝑗

(12)

The execution of multiple tests for pairwise comparison of multiple methods leads to 

the inflation of type I error. To avoid this issue, the Bonferroni control method (Shingala, 2016; 

Demsar, 2006) was performed.

A naive forecasting method was introduced between the models to verify the superiority 

of the methods in relation to a model with low cost of implementation. In this case, the months 

of the last year will be used as a forecast for a subsequent year. 

The RMSE was used as a criterion for ranking the models. However, the Mean Absolute 

Square Error (MAPE) will be displayed for each point in time (that is, for the ℎ-step ahead 
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forecast from that date), calculated according to Eq. (14), in order to facilitate the interpretation 

of results by excluding the dimensional issue in errors. 

Additionally, the maximum Percentage Error (PE) considering the  step ahead forecast ℎ

horizon is also presented (Eq. 15).

𝑅𝑀𝑆𝐸𝑡 =
1
ℎ∑

ℎ

𝑗 = 1
(𝑌𝑗 ― 𝑌𝑗)2 (13

) 𝑀𝐴𝑃𝐸𝑡 =
100%

ℎ ∑ℎ

𝑗 = 1

|𝑌𝑗 ― 𝑌𝑗|
𝑌𝑗

(14
)

max 𝑃𝐸𝑡 = max {|𝑌𝑗 ― 𝑌𝑗|
𝑌𝑗 }

ℎ

𝑗 = 1

(15
)

4 RESULTS AND DISCUSSION

4.1 Cross-validation results
Table II shows the results of the selection of hyperparameters. Models whose parameters 

are chosen according to the forecast horizon show a break for 3, 6 and 12 months.

Insert Table II

The use of non-seasonally adjusted series in the ANN, Multi ANN, SVM, HyFIS and 

Random Forest models comprises the alternative with the smaller forecast error.

The additional diagnostic tests performed for the Sarima and VECM models indicate 

good adherence of the models to the data, except for the normality tests of the residues. The 

Arima model with binary variables, in its turn, presented problems of non-normality and 

heteroscedasticity. 

Despite the results of the normality tests, it is worth noting that they are highly sensitive 

to the presence of outliers and, in such cases, tend to reject the hypothesis of normally 

distributed data with ease (Coin, 2008). Thus, these approaches were also considered in the 

model comparison procedures.

4.2 Accuracy evaluation and model comparison

At first, the comparison with the combined models was disregarded in order to choose 

the algorithms with superior individual performances.

Table III shows the average rankings for each method and the result of the Friedman 

test.
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 Insert Table III

The results of the Nemenyi test, in its turn, are presented in Figures 3 to 5. The best 

algorithm identified by this procedure was SVM, followed by AR.Bin and VECM for the 12- 

and 6-month forecast. Only in the case of the 3-month horizon did these models exceed SVM’s 

performance. 

However, it is not possible to affirm that the first 6 best ranked models have a 

statistically lower performance than SVM in the 12-month forecast. The same is valid for the 

forecast of 6 and 3 months ahead. The confidence interval of the test is represented in Figures 

3 to 5 by the gray area.

Insert Figures 3 to 5

The performances of the best-ranked methods were statistically superior to the naive 

model. This fact suggests greater robustness of these procedures, in contrast to the higher 

computational cost necessary to implement them.

Tables IV to VI show the mean and standard deviation of the MAPE of the forecast, the 

MAPE average of the training sample, the maximum and minimum MAPE value and the 

maximum percentage error of each model considering all periods used in the validation.

Insert Table IV to VI

Tables IV to VI end up reflecting the results obtained in the Nemenyi test. SVM, AR.Bin 

and VECM lead with the best accuracy. 

Except for MANN for 12 months forecast, apparently no method has an over-fitting 

problem, since the training and validation errors do not differ significantly. 

The longer forecast horizon implies an increase in the average MAPE of the models, 

which have greater accuracy in the 3-month forecast, followed by the 6- and then 12-month 

forecast.

In addition, this increase in the forecast horizon does not lead to generalized degradation 

of the forecasting capacity of the methods and, on the other hand, allows to discriminate them 

more precisely. Consequently, there is a greater heterogeneity of rankings and MAPE in the 12-

month forecast. The SAR model is no longer part of the significant region of Nemenyi test. 
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Therefore, there is a strong indication that the SVM showed to be superior to the Sarima method 

for the data used.

In order to assess the stability of the forecast error, one can analyze the MAPE standard 

deviation and the maximum percentage error within a point in time. SVM, whose performance 

ranking was the best among all methods in the 12- and 6-month forecast, also obtained the 

smallest standard deviation of MAPE considering all horizons. Considering the longer forecast 

horizon, the maximum percentage error of this model was 11.6% and the maximum MAPE was 

5.7%. On the other hand, the AR.Bin model, whose ranking was the second best, has the fifth 

largest standard deviation, maximum percentage error of 16.2% and maximum MAPE of 8.4%.

After analyzing the individual methods, the joint learning models were implemented 

considering the 3 methods with the lowest MAPE in each forecast horizon, these being SVM, 

AR.Bin and VECM.

4.3 Results of the Ensemble Learning Models
The Friedman and Nemenyi tests were reevaluated including the combined methods. 

Table VII presents the average ranking of the models and Figures 6 to 8 the result of the 

Nemenyi test.

Insert Table VII

Insert Figures 6 to 8

Tables VIII to X show the metrics previously mentioned, in the individual models, for 

the combined models.

Insert Table VIII to X

Although the combined models have lower forecasting errors, the performed tests do 

not reject the null hypothesis that their accuracy is as good as that generated by the individual 

methods. Also, the combination using the mean of the forecasts generates a MAPE as good as 

the combination based on the inference of the weights using the least squares method.

 

4.4 General evaluation of results and considerations on the application of the models
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In general terms, model forecasts for three months of consumption showed an average 

MAPE below 2.3%, with maximum variations (Max MAPE) below 6%. These values indicate 

that the structure developed can be useful for commercial and logistical planning carried out 

routinely by agents of the private sector, in the dimensioning of their operations in the short 

term. In the case of fuel supply contracts, for example, the negotiations cover permitted 

variations of up to 5% in the withdrawal of the volume initially contracted.

 Short-term projections can be used by the public sector in the process of monitoring 

domestic fuel supply. In the case of the Otto cycle, this activity is carried out periodically by 

the Supply Monitoring Committee, coordinated by the Ministry of Mines and Energy. This 

committee was created by Resolution No. 14/2017 of the National Energy Policy Council 

(CNPE, 2017) and, among other aspects, aims to monitor the conditions of supply and demand 

for light fuels, in addition to discussing strategies to ensure adequate supply of the light fuels.

In the case of annual forecast, the results obtained show options for models with an 

average MAPE below 3%. These parameters also reveal the possibility of using the evaluated 

models in the coordination and planning of agents operating in this sector.

To cite an example, the projection of fuel consumption of the Otto cycle for 12 months 

is one of the parameters to be evaluated by agents in the process of contracting anhydrous 

ethanol. This is because ANP Resolution No. 67/2011 (ANP, 2011) established incentives for 

the advance contracting of the supply of this biofuel between producers and distributors. 

Currently, the minimum volume to be contracted is defined based on the consumption of 

gasoline observed in the previous year. 

Still in the regulatory sphere, the approval of Law No. 13,576 of December 2017 and 

the institution of the National Biofuels Policy in Brazil (RenovaBio [4]) started to require 

regular forecasts for the definition of the ten-year goals of reducing the carbon intensity of the 

Brazilian fuel matrix (CRBIO, 2020; CNPE, 2020). This definition is annually approved after 

a wide public consultation process. Among the parameters used in that definition, there is the 

consumption of light fuels in the country. Thus, the tools developed here can also be useful for 

the calibration of the decarbonization goals mentioned above.

5 CONCLUSIONS

The present study compared different methods for predicting the consumption of Otto 

cycle fuels in Brazil. The cross-validation procedure allowed estimate the generalization error 

of the models and the average MAPE obtained was less than 3% in all forecast horizons. 
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Additionally, the methods with the best performance proved to be significantly superior to the 

naive forecasting model. 

In addition, for the 12-month forecast, the SVM and the combined RLS method were 

found to be statistically superior to Sarima. This fact is relevant given the wide use of this 

method, which makes it an interesting benchmarking for forecasting.

Even in periods of great uncertainty, the models’ performance proved to be stable, with 

model options whose maximum monthly error remained at 11.61% for the 12-month forecast 

and was less than 10% for the 6- and 3-month periods.

Thus, it is possible to conclude that, despite the technological, market, and institutional 

changes observed in the Brazilian light fuel sector in the last 10 years, the forecast models 

evaluated indicate that it is possible to make forecasts for the consumption of light fuels with a 

satisfactory level of accuracy.

Total consumption forecast for light fuels is useful for private agents in the definition of 

operational and investment actions related to the production, distribution, transport, and resale 

of fuels in the country. 

In the case of the public sector, the models implemented can be used in the dimensioning 

of resources to adjust domestic production capacity, as well as the logistical infrastructure 

necessary to supply the demand for transport. In addition, in the Brazilian case, consumption 

forecast is critical for the more efficient operation of marketing rules and established public 

policies.

Finally, the analysis conducted here does not cover all the need for further studies related 

to the topic. Models for carrying out regional forecasts and forecasting the individual demand 

for each fuel are important for a deeper understanding of the topic. Finally, studies to assess the 

structural impact of the recent COVID-19 pandemic on fuel consumption in the future are 

essential for a thorough analysis on the topic.

Notes

1. The term “Otto cycle” refers to the thermodynamic cycle associated with the operation of 

internal combustion engines with spark ignition. 

2. The company Petróleo Brasileiro SA (Petrobrás) is a Brazilian mixed capital company whose 

majority shareholder is the federal government.
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3. The analysis period was limited to the availability of data up to the research conclusion.

4. The program aims to establish emission targets for fuel distributors in view of the level of 

pollution related to each fuel. 
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Figure 1. Consumption of Hydrous Ethanol, Gasoline and NGV in liters of equivalent gasoline monthly from 
August 2002 to August 2018. 

542x261mm (96 x 96 DPI) 

Page 26 of 58International Journal of Energy Sector Management

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



International Journal of Energy Sector M
anagem

ent

 

Figure 2. Procedure for estimating the prediction error of the models. 
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Figure 3. Result and confidence interval of the Nemenyi test for forecast 12 months ahead. 
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Figure 4. Result and confidence interval of the Nemenyi test for forecast 6 months ahead. 
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Figure 5. Result and confidence interval of the Nemenyi test for forecast 3 months ahead. 
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Figure 6. Result and confidence interval of the Nemenyi test for forecast 12 months ahead including the 
ensemble learning models. 
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Figure 7. Result and confidence interval of the Nemenyi test for forecast 6 months ahead including the 
ensemble learning models. 
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Figure 8. Result and confidence interval of the Nemenyi test for forecast 3 months ahead including the 
ensemble learning models. 
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Table I: Hyperparameters to be priori determined in each model.

Model Hyperparameters

Sarima
Number of autoregressive terms ( ), moving average ( ), integration order ( , number of 𝑝 𝑞 𝑑)
seasonal autoregressive terms ( ), seasonal moving average ( ) and seasonal integration order 𝑃 𝑄
(D .)

Arima w/ 
Binarys Number of autoregressive terms ( ), moving average ( ), integration order ( ,𝑝 𝑞 𝑑)

VECM Number of autoregressive terms ( ) and cointegration vectors ( ).𝑝 𝑟

ANN Number of autoregressive terms ( ), number of neurons in the first and second hidden layer (𝑝 𝑘1,
).𝑘2

Multi ANN
Number of autoregressive terms (  of the endogenous variables, i.e, Otto cycle consumption, 𝑝)
average price of light fuels and GDP per capita, number of neurons in the first and second hidden 
layer ( ).𝑘1,𝑘2

SVM Number of autoregressive terms ( , error tolerance threshold ( ), constant  and the kernel 𝑝) ϵ 𝐶
function for input space transformation. 

Hyfis Number of autoregressive terms ( ), number of labels that define the input and output speech 𝑝
universe ( ).𝐿

Random 
Forest

Number of autoregressive terms ( ), number of trees ( ), number of explanatory variables used 𝑝 𝐵
by a tree ( ) and the minimum size of a terminal node ( ).𝑚 𝑛𝐵

𝑚𝑖𝑛
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Table II: Hyperparameters selected from cross-validation procedures and information criteria.
Model Treatment of

Seasonality
Data pre-
processing Optimal Hyperparameters

Sarima Seasonal autoregressive 
terms Logarithm 𝑝 = 2, 𝑑 = 1, 𝑞 = 3

𝑃 = 1, 𝐷 = 0, 𝑄 = 1

Arima w/ 
Binarys Binary variables Logarithm 𝑝 = 5, 𝑑 = 1, 𝑞 = 5

VECM Binary variables Logarithm 𝑝 = 5, 𝑟 = 1

3 months 𝑝 = 3, 𝑘1 = 1 , 𝑘2 = 2

6 months 𝑝 = 5, 𝑘1 = 1 , 𝑘2 = 5ANN Moving Averages Filter
Standardization by 
mean and standard 
deviation 12 months 𝑝 = 4 , 𝑘1 = 1 , 𝑘2 = 2

3 meses 3 months 𝑝 = 4, 𝑘1 = 10, 𝑘2 = 10

6 meses
Moving 
Averages Filter 6 months 𝑝 = 3, 𝑘1 = 4, 𝑘2 = 0Multi 

ANN
12 meses Binary 

variables

Standardization by 
mean and standard 
deviation 12 months 𝑝 = 3, 𝑘1 = 10, 𝑘2 = 9

3 months  𝑝 = 3, ϵ = 0,1, 𝐶 = 6,
kernel=gaussiano

6 months  𝑝 = 3, ϵ = 0,1, 𝐶 = 10,
kernel=gaussianoSVM Moving Averages Filter

Standardization by 
mean and standard 
deviation

12 months  𝑝 = 3, ϵ = 0,1, 𝐶 = 10,
kernel=gaussiano

3 months 𝑝 = 3, 𝐿 = 22

6 months 𝑝 = 3, 𝐿 = 22HyFIS Moving Averages Filter
Standardization by 
mean and standard 
deviation 12 months 𝑝 = 3, 𝐿 = 16

3 months 𝑝 = 6, 𝐵 = 100, 𝑚 = 5, 
𝑛𝐵

𝑚𝑖𝑛 = 6

6 months 𝑝 = 6, 𝐵 = 100, 𝑚 = 4, 
𝑛𝐵

𝑚𝑖𝑛 = 3
Random 
Forest Moving Averages Filter No transformation

12 months 𝑝 = 6, 𝐵 = 100, 𝑚 = 5, 
𝑛𝐵

𝑚𝑖𝑛 = 5
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Table III: Average ranks of the models and result of the Friedman’s test.
Model Average Rank 

(12 months)
Average Rank 

(6 months)
Average Rank 

(3 months)
SVM 3.33 3.97 4.38
AR.Bin 3.78 4.25 4.10
RF 4.35 4.81 5.51
HYFIS 4.52 5.12 5.14
VECM 4.61 4.24 3.94
ANN 4.74 4.28 4.18
SAR 5.16 5.01 4.77
MANN 7.23 5.48 5.31
Naive 7.28 7.77 7.67
General average 5.00 5.00 5.00
p-value Friedman test
(Ha: Different performances) 0.00 0.00 0.00
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Table IV: Summary of accuracy performance of methods for forecasting 12 months ahead.

Model Average 
MAPE

Average 
MAPE 

(Training)

MAPE standard 
deviation Max MAPE Min MAPE Max EP

SVM 2.78% 2.12% 1.11% 5.67% 1.47% 11.61%
AR.Bin 2.89% 1.92% 1.44% 8.40% 1.22% 16.21%
VECM 2.91% 1.99% 1.21% 7.31% 1.34% 16.78%
RF 3.05% 2.66% 1.33% 6.43% 1.71% 12.03%
ANN 3.25% 2.21% 1.48% 7.24% 1.52% 13.24%
HYFIS 3.26% 2.98% 1.50% 7.14% 1.21% 12.81%
SAR 3.32% 2.15% 1.67% 8.58% 1.25% 19.71%
Naive 4.62% - 1.71% 7.37% 1.98% 13.23%
MANN 4.71% 2.31% 1.87% 9.34% 1.35% 21.58%
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Table V: Summary of accuracy performance of methods for forecasting 6 months ahead.

Model Average 
MAPE

Average 
MAPE 

(Training)

MAPE standard 
deviation Max MAPE Min MAPE Max EP

AR.Bin 2.45% 1.92% 0.99% 6.07% 0.97% 11.43%
SVM 2.47% 2.12% 0.81% 4.48% 1.11% 8.94%
VECM 2.53% 1.99% 1.01% 5.17% 0.79% 10.10%
ANN 2.54% 2.20% 0.93% 5.85% 0.69% 9.45%
RF 2.66% 2.64% 0.96% 5.34% 1.20% 9.73%
SAR 2.68% 2.15% 1.20% 6.29% 1.06% 13.81%
HYFIS 2.74% 2.67% 1.02% 5.34% 0.90% 10.22%
MANN 3.37% 3.25% 1.99% 12.56% 2.00 % 18.42%
Naive 4.65% - 1.94% 8.64% 1.24% 13.23%
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Table VI: Summary of accuracy performance of methods for forecasting 3 months ahead.

Model Average 
MAPE

Average 
MAPE 

(Training)

MAPE standard 
deviation Max MAPE Min MAPE Max EP

AR.Bin 2.28% 1.92% 1.17% 6.06% 0.49% 11.79%
VECM 2.28% 1.99% 1.23% 5.63% 0.64% 9.19%
SVM 2.34% 2.12% 1.03% 5.54% 0.68% 7.97%
ANN 2.40% 2.20% 1.09% 5.11% 0.51% 8.05%
SAR 2.42% 2.15% 1.29% 7.31% 0.67% 13.20%
HYFIS 2.56% 2.66% 1.18% 5.45% 0.70% 9.46%
RF 2.58% 2.65% 1.17% 5.68% 0.54% 9.44%
MANN 2.77% 3.26% 1.29% 6.88% 0.79% 10.93%
Naive 4.72% - 2.26% 9.54% 0.95% 13.23%
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Table VII: Average ranks of individual and combined models and Friedman’s test result.
Model Average Rank 

(12 months)
Average Rank 

(6 months)
Average Rank 

(3 months)
RLS 6.45 6.69 4.76
AVG 6.52 6.72 4.63
SVM 6.96 7.57 5.49
AR.Bin 7.00 7.65 5.24
RF 8.33 8.75 6.83
VECM 8.41 8.11 5.18
HYFIS 8.68 9.52 6.53
ANN 9.04 8.21 5.29
SAR 9.46 8.99 5.87

MANN 13.51 10.20 6.73
Seas Naive 13.38 14.32 9.45
General average 9.00 9.00 9.00
p-value Friedman test
(Ha: Different performances) 0.00 0.00 0.00
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Tabela VIII: Summary of accuracy performance of combined models for forecasting 12 
months ahead.

Model Average 
MAPE

Average 
MAPE 

(Training)

MAPE standard 
deviation Max MAPE Min MAPE Max EP

AVG 2.65% 1.90% 0.95% 6.75% 1.23% 14.01%
RLS 2.68% 1.88% 1.21% 7.89% 1.15% 15.33%
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Tabela IX: Summary of accuracy performance of combined models for forecasting 12 months 
ahead.

Model Average 
MAPE

Average 
MAPE 

(Training)

MAPE standard 
deviation Max MAPE Min MAPE Max EP

AVG 2.33% 1.90% 0.82% 4.98% 0.88% 9.85%
RLS 2.34% 1.88% 0.91% 5.68% 0.85% 10.23%
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Tabela X: Summary of accuracy performance of combined models for forecasting 12 months 
ahead.

Model Average 
MAPE

Average 
MAPE 

(Training)

MAPE standard 
deviation Max MAPE Min MAPE Max EP

RLS 2.15% 1.88% 1.14% 5.54% 0.54% 9.05%
AVG 2.18% 1.90% 1.08% 5.54% 0.54% 8.83%
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Appendice A: Statistical tests of the models Sarima and Arima with binary 

variables

Table A.1. Results of Dickey-Pantula test for two-unit roots for the Otto cycle 
consumption series.

Dickey-Pantula test 
conclusion Type of test Test statistics Critical Value 

(5%)
Number of unit roots < 2 Without deterministic terms -3.8142 -3.4333
Number of unit roots < 2 With constant -5.2328 -3.4334
Number of unit roots < 2 With constant and trend -5.5911 -3.4335

Table A.2. Results of DF-GLS unit root test for the Otto cycle consumption series.
DF-GLS test conclusion Type of test Test statistics Critical Value 

(5%)
Not stationary With trend -0.4756 -2.93
Not stationary With constant 1.2701 -1.94

Table A.3. Results of KPSS unit root test for the Otto cycle consumption series.
KPSS test conclusion Type of test Test statistics Critical Value 

(5%)
Not stationary With constant 1.3934 0.463
Not stationary With constant and trend 0.2629 0.146

Table A.4. Results of OCSB test for seasonal unit root for the Otto cycle consumption 
series.

OCSB test conclusion Test statistics Critical Value (5%)
Not have seasonal unit root -5.3775 -1.803

Table A.5. Autocorrelation test of the residuals of the Sarima model for the Otto cycle 
consumption series.

Ljung-Box test conclusion (CL=5%) p-value Number of lags used in the test
There is no autocorrelation 0.9104 2
There is no autocorrelation 0.6804 4
There is no autocorrelation 0.8003 6
There is no autocorrelation 0.6484 12
There is no autocorrelation 0.7556 18

Table A.6. Normality test of the residuals of the Sarima model for the Otto cycle 
consumption series.

Normality test conclusion (CL=5%) Test p-value
Not normally distributed Jarque-Bera 0.001785
Not normally distributed Shapiro-Wilk 0.0121

Table A.7. Heteroscedasticity test of the residuals of the Sarima model for the Otto cycle 
consumption series.

Heteroscedasticity test conclusion 
(CL=5%) Test Number of lags used in the test

Not heteroscedastic LM 4, 8, 12, 16

Table A.8. Autocorrelation test of the residuals of the Arima with binary variables model 
for the Otto cycle consumption series.

Ljung-Box test conclusion (CL=5%) p-value Number of lags used in the test
There is no autocorrelation 0.8326 2
There is no autocorrelation 0.9756 4
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There is no autocorrelation 0.9874 6
There is no autocorrelation 0.9896 12
There is no autocorrelation 0.9971 18

Table A.9. Normality test of the residuals of the Arima with binary variables model for 
the Otto cycle consumption series.

Normality test conclusion (CL=5%) Test p-value
Not normally distributed Jarque-Bera 2.2 10-16×
Not normally distributed Shapiro-Wilk 5.2 10-6×

Table A.10. Heteroscedasticity test of the residuals of the Arima with binary variables 
model for the Otto cycle consumption series.

Heteroscedasticity test conclusion 
(CL=5%) Test Number of lags used in the test

Not homoscedastic LM 4, 8, 12, 16
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Appendice B: Statistical tests of the VECM model

Table B.1. Results of Dickey-Pantula test for two-unit roots for the average price of light 
fuels series.

Dickey-Pantula test 
conclusion Type of test Test statistics Critical Value 

(5%)
Number of unit roots < 2 Without deterministic terms -9.1702 -3.4333
Number of unit roots < 2 With constant -9.1500 -3.4334
Number of unit roots < 2 With constant and trend -9.1287 -3.4335

Table B.2. Results of DF-GLS unit root test for the average price of light fuels series.
DF-GLS test conclusion Type of test Test statistics Critical Value 

(5%)
Not stationary With trend -1.9387 -2.93
Not stationary With constant -1.111 -1.94

Table B.3. Results of KPSS unit root test for the average price of light fuels series.
KPSS test conclusion Type of test Test statistics Critical Value 

(5%)
Not stationary With constant 1.029 0.463
Not stationary With constant and trend 0.1976 0.146

Table B.4. Results of OCSB test for seasonal unit root for the average price of light fuels 
series.

OCSB test conclusion Test statistics Critical Value (5%)
Not have seasonal unit root -14.1002 -1.803

Table B.5. Results of Dickey-Pantula test for two-unit roots for the GDP per capita series.
Dickey-Pantula test 

conclusion Type of test Test statistics Critical Value 
(5%)

Number of unit roots < 2 Without deterministic terms -3.1210 -3.4333
Number of unit roots < 2 With constant -3.6393 -3.4334
Number of unit roots < 2 With constant and trend -4.2924 -3.4335

Table B.6. Results of DF-GLS unit root test for the GDP per capita series.
DF-GLS test conclusion Type of test Test statistics Critical Value 

(5%)
Not stationary With trend -0.5627 -2.93
Not stationary With constant 0.4032 -1.94

Table B.7. Results of KPSS unit root test for the GDP per capita series.
KPSS test conclusion Type of test Test statistics Critical Value 

(5%)
Not stationary With constant 1.2468 0.463
Not stationary With constant and trend 0.3007 0.146

Table B.8. Results of OCSB test for seasonal unit root for the GDP per capita series.
OCSB test conclusion Test statistics Critical Value (5%)

Not have seasonal unit root -4.1836 -1.803

Table B.9. Johansen maximum eigenvalue cointegration test.
Test null hypothesis Test value Critical Value (5%)

𝑟 ≤ 2 5.53 9.24
𝑟 ≤ 1 13.75 15.67
𝑟 = 0 186.92 22.00
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Table B.10. Johansen trace cointegration test.
Test null hypothesis Test value Critical Value (5%)

𝑟 ≤ 2 5.53 9.24
𝑟 ≤ 1 19.28 19.96
𝑟 = 0 206.20 34.91

Table B.11. Edgerton-Shukur multivariate autocorrelation test for the residuals.
Edgerton-Shukur test conclusion 

(CL=5%) p-value Number of lags used in the test

There is no autocorrelation 0.9652 2
There is no autocorrelation 0.8031 4
There is no autocorrelation 0.258 6

Table B.12. Portmanteau multivariate autocorrelation test for the residuals.
Portmanteau test conclusion (CL=5%) p-value Number of lags used in the test

There is autocorrelation 0.0022 6
There is no autocorrelation 0.0629 12
There is no autocorrelation 0.1542 18

Table B.13. Jarque-Bera multivariate normality test for the residuals.
Jarque-Bera test conclusion (CL=5%) p-value Tested series

Not normally distributed 2.138e-06 Otto cycle consumption
Not normally distributed 8.151e-13 Average price of light fuels
Not normally distributed 1.109e-06 GDP per capita
Not normally distributed 2.200e-16 All series together

Table B.13. Shapiro-Wilk multivariate normality test for the residuals.
Shapiro-Wilk test conclusion (CL=5%) p-value Tested series

Not normally distributed 1.24e-2 Otto cycle consumption
Not normally distributed 1.15e-6 Average price of light fuels
Not normally distributed 8.17e-3 GDP per capita
Not normally distributed 9.58e-4 All series together

Table B.14. LM multivariate heteroscedasticity test for the residuals.
Heteroscedasticity test conclusion 

(CL=5%) Tested series Number of lags used in the 
test

Not heteroscedastic Otto cycle consumption 2, 5, 12, 18
Not heteroscedastic Average price of light fuels 2, 5, 12, 18
Not heteroscedastic GDP per capita 2, 4, 6, 12, 18
Not homoscedastic All series together 2, 4, 6, 12, 18
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Appendice C: MAPE, maximum and minimum percentage error series for all models

Figure C.1. MAPE, average MAPE and maximum and minimum absolute percentage 
error of the SVM model for 12-month forecast ahead.

Figure C.2. MAPE, average MAPE and maximum and minimum absolute percentage 
error of the SVM model for 6-month forecast ahead.

Figure C.3. MAPE, average MAPE and maximum and minimum absolute percentage error of the SVM model for 3-month forecast ahead.
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Figure C.4. MAPE, average MAPE and maximum and minimum absolute percentage 
error of the VECM model for 12-month forecast ahead.

Figure C.5. MAPE, average MAPE and maximum and minimum absolute percentage 
error of the VECM model for 6-month forecast ahead.

Figure C.6. MAPE, average MAPE and maximum and minimum absolute percentage error of the VECM model for 3-month forecast ahead.
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Figure C.7. MAPE, average MAPE and maximum and minimum absolute percentage 
error of the AR.Bin model for 12-month forecast ahead.

Figure C.8. MAPE, average MAPE and maximum and minimum absolute percentage 
error of the AR.Bin model for 6-month forecast ahead.

Figure C.9. MAPE, average MAPE and maximum and minimum absolute percentage error of the AR.Bin model for 3-month forecast ahead.
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Figure C.10. MAPE, average MAPE and maximum and minimum absolute percentage 
error of the ANN model for 12-month forecast ahead.

Figure C.11. MAPE, average MAPE and maximum and minimum absolute percentage 
error of the ANN model for 6-month forecast ahead.

Figure C.12. MAPE, average MAPE and maximum and minimum absolute percentage error of the ANN model for 3-month forecast ahead.
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Figure C.13. MAPE, average MAPE and maximum and minimum absolute percentage 
error of the RF model for 12-month forecast ahead.

Figure C.14. MAPE, average MAPE and maximum and minimum absolute percentage 
error of the RF model for 6-month forecast ahead.

Figure C.15. MAPE, average MAPE and maximum and minimum absolute percentage error of the RF model for 3-month forecast ahead.
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Figure C.16. MAPE, average MAPE and maximum and minimum absolute percentage 
error of the HyFIS model for 12-month forecast ahead.

Figure C.17. MAPE, average MAPE and maximum and minimum absolute percentage 
error of the HyFIS model for 6-month forecast ahead.

Figure C.18. MAPE, average MAPE and maximum and minimum absolute percentage error of the HyFIS model for 3-month forecast ahead.
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Figure C.19. MAPE, average MAPE and maximum and minimum absolute percentage 
error of the SAR model for 12-month forecast ahead.

Figure C.20. MAPE, average MAPE and maximum and minimum absolute percentage 
error of the SAR model for 6-month forecast ahead.

Figure C.21. MAPE, average MAPE and maximum and minimum absolute percentage error of the SAR model for 3-month forecast ahead.
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Figure C.22. MAPE, average MAPE and maximum and minimum absolute percentage 
error of the MANN model for 12-month forecast ahead.

Figure C.23. MAPE, average MAPE and maximum and minimum absolute percentage 
error of the MANN model for 6-month forecast ahead.

Figure C.24. MAPE, average MAPE and maximum and minimum absolute percentage error of the MANN model for 3-month forecast ahead.
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Figure C.25. MAPE, average MAPE and maximum and minimum absolute percentage 
error of the Naive model for 12-month forecast ahead.

Figure C.26. MAPE, average MAPE and maximum and minimum absolute percentage 
error of the Naive model for 6-month forecast ahead.

Figure C.27. MAPE, average MAPE and maximum and minimum absolute percentage error of the Naive model for 3-month forecast ahead.

Page 56 of 58International Journal of Energy Sector Management

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



International Journal of Energy Sector Management

Figure C.28. MAPE, average MAPE and maximum and minimum absolute percentage 
error of the RLS model for 12-month forecast ahead.

Figure C.29. MAPE, average MAPE and maximum and minimum absolute percentage 
error of the RLS model for 6-month forecast ahead.

Figure C.30. MAPE, average MAPE and maximum and minimum absolute percentage error of the RLS model for 3-month forecast ahead.
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Figure C.31. MAPE, average MAPE and maximum and minimum absolute percentage 
error of the AVG model for 12-month forecast ahead.

Figure C.32. MAPE, average MAPE and maximum and minimum absolute percentage 
error of the AVG model for 6-month forecast ahead.

Figure C.33. MAPE, average MAPE and maximum and minimum absolute percentage error of the AVG model for 3-month forecast ahead.
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